多變數函數的圖形

2021年5月29日 下午 06:09

Let's start with a simple scenario where the function depends explicitly only on x. When z doesn't explicitly depend on y, we can use a 2D plot to find the full 3D graph.

One of the graphs below correctly displays z=f(x,y)=|x| as seen by someone staring down the positive y-axis. Which one is it?

ı.

111.

The graph z=|x| projected onto the xz-plane down the positive y-axis looks like a \mathbf{V} . Notice how z doesn't depend on y at all. Use this to figure out exactly which of the options below corresponds to the full 3D graph of z=|x|.

$$z = |x|$$

$$\Rightarrow (x, y, |x|) \Rightarrow |V|$$

The same idea applies if z doesn't depend on x. Let's get direct experience with this idea by plotting

$$z = e^y$$
.

Select the correct 3D graph from the options below.

if
$$y=e^{x} \rightarrow 1$$

if
$$y=e^x \Rightarrow 1$$

then $z=e^y \Rightarrow 1$

$$\Rightarrow$$
 $C = \sqrt{9-2x^2-y^2}$

$$\Rightarrow c^2 = 9 - z x^2 - y^2$$

Use horizontal slices to determine the graph of

$$f(x,y) = |xy|.$$

Select the best option from below.

I.

11.

III.

IV.

$$T(x,y) = \frac{1}{1+x^2+y^2}$$

補強資料2第5頁

